Theme 6: Delivering the prediction at the point of decision is critical
[tweetmeme source=”atripathy” only_single=false]In 2007, my wife worked as a hospitalist in Charlotte. Around that time, I noticed a strange pre-work ritual she followed. She took printouts of a few pages from the Wal-Mart website before going to work. The behavior was surprising and one day I asked her about the mysterious printouts. It turns out that she was printing out the list of generic drugs that were covered in Wal-Mart’s $4 prescription plan.
Like most physicians, she used to struggle with the fact that some of her patients were not complying with their medications as they were not able to afford the medicines she was prescribing. Wal-Mart had introduced a plan, where they sold some common generic drugs at $4 per prescription. A lot of patients were able to afford the Wal-Mart medicines and it was popular amongst the doctors to prescribe from the Wal-Mart covered drugs. However there was one issue. The Wal-Mart covered drug list was not integrated with the Epocrates system, the mobile clinical decision support software that most doctors use to verify drug dosage and interactions prior to writing the prescriptions. At the time of writing the prescription, the doctor did not know whether the specific drug was covered within the Wal-Mart plan, unless she chose to make the extra effort and carry a printout of covered drugs and refer to it prior to writing every prescription. A great idea suddenly became less attractive to act upon, as the right information was not made available at the point of decision. I refer to this as the last mile decision delivery problem of predictive analytics projects.
Most of the effort in analytics projects is spent on defining the problem, aggregating data, building and testing models. Getting the information of the model to the decision maker at the point of decision is at many times an afterthought. However, the benefits of the project are dependent on solving this critical last mile problem.
In my experience decision delivery is challenging as it requires cross-organizational coordination. Successful analytics projects are a partnership between the analytics, business and IT groups. The analytics group needs to work very closely with decision makers or the end users to put the analysis results in context of the decision maker’s workflow. The actual delivery of the information is done through a mobile handheld device to a distributed sales force, CRM system integration for call centers or executive dashboard delivery through reporting system integration. All of them require close collaboration with the IT group which has to take the results of a predictive model and integrate it with the relevant front end or reporting infrastructure. Then there is end-user training to ensure the end-users know what to do with the new information. The program management effort required to execute such a cross-organization initiative is significant and very often not anticipated or planned by the project sponsors.
A good program manager is critical to most complex predictive analytics projects. He/she is able to coordinate the various stakeholders to align on problem definition, outcome format, technology integration and training to drive user adoption of predictive analytics solution. Something to keep in mind as you plan your predictive analytics initiatives.
Have you seen predictive analytics projects getting derailed due to lack of coordination between various groups within the organization or under investment in program management resources?
PS: Last year Wal-Mart solved its last mile problem and integrated the covered $4 prescription drug list into the Epocrates application.
Previous parts of the series are available here: part 1, part 2, part 3, part 4, and part 5
Cross posted on TheInformationAdvantage.com
Good post and neat real-world story example.
Thanks Rama!
Excellent post, I agree 100 percent that deployment and integration of Predictive Analytics is often an afterthought! However, that is where predictive models start generating ROI and provide real benefits to the business.
That is exactly why we at Zementis focus on the operational integration of Predictive Analytics. Based on open standards, our ADAPA decision engine provides real-time, on-demand execution of predictive models within any business process. Please see the following references for specific examples:
Integrating real-time predictive analytics into SAP applications
http://adapasupport.zementis.com/2010/01/integrating-predictive-models-into-sap.html
ACM SIGKDD Explorations Journal: Efficient deployment of predictive analytics through open standards and cloud computing
Click to access SIGKDD_ADAPA.pdf
Michael,
Thank you so much for the comment and sharing the papers. I look forward to reading them. You guys seem to be doing some very interesting work. Good luck!
[…] have earlier written about that Insight at the point of decision making/action is critical. I came across a great […]